The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade Amazon-Linux:2 perf-debuginfo to version 0:4.14.313-235.533.amzn2 or higher.
This issue was patched in ALAS2-2023-2027.
Note: Versions mentioned in the description apply only to the upstream perf-debuginfo package and not the perf-debuginfo package as distributed by Amazon-Linux.
See How to fix? for Amazon-Linux:2 relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread()
The finalization of nilfs_segctor_thread() can race with nilfs_segctor_kill_thread() which terminates that thread, potentially causing a use-after-free BUG as KASAN detected.
At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member of "struct nilfs_sc_info" to indicate the thread has finished, and then notifies nilfs_segctor_kill_thread() of this using waitqueue "sc_wait_task" on the struct nilfs_sc_info.
However, here, immediately after the NULL assignment to "sc_task", it is possible that nilfs_segctor_kill_thread() will detect it and return to continue the deallocation, freeing the nilfs_sc_info structure before the thread does the notification.
This fixes the issue by protecting the NULL assignment to "sc_task" and its notification, with spinlock "sc_state_lock" of the struct nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate the race.