The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade Amazon-Linux:2023 kernel-debuginfo-common-aarch64 to version 0:6.1.29-47.49.amzn2023 or higher.
This issue was patched in ALAS2023-2023-184.
Note: Versions mentioned in the description apply only to the upstream kernel-debuginfo-common-aarch64 package and not the kernel-debuginfo-common-aarch64 package as distributed by Amazon-Linux.
See How to fix? for Amazon-Linux:2023 relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
x86: fix clear_user_rep_good() exception handling annotation
This code no longer exists in mainline, because it was removed in commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing") upstream.
However, rather than backport the full range of x86 memory clearing and copying cleanups, fix the exception table annotation placement for the final 'rep movsb' in clear_user_rep_good(): rather than pointing at the actual instruction that did the user space access, it pointed to the register move just before it.
That made sense from a code flow standpoint, but not from an actual usage standpoint: it means that if user access takes an exception, the exception handler won't actually find the instruction in the exception tables.
As a result, rather than fixing it up and returning -EFAULT, it would then turn it into a kernel oops report instead, something like:
BUG: unable to handle page fault for address: 0000000020081000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
...
RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147
...
Call Trace:
__clear_user arch/x86/include/asm/uaccess_64.h:103 [inline]
clear_user arch/x86/include/asm/uaccess_64.h:124 [inline]
iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800
iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline]
iomap_dio_iter fs/iomap/direct-io.c:440 [inline]
__iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601
iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689
ext4_dio_read_iter fs/ext4/file.c:94 [inline]
ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145
call_read_iter include/linux/fs.h:2183 [inline]
do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733
do_iter_read+0x2f2/0x750 fs/read_write.c:796
vfs_readv+0xe5/0x150 fs/read_write.c:916
do_preadv+0x1b6/0x270 fs/read_write.c:1008
__do_sys_preadv2 fs/read_write.c:1070 [inline]
__se_sys_preadv2 fs/read_write.c:1061 [inline]
__x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
which then looks like a filesystem bug rather than the incorrect exception annotation that it is.
[ The alternative to this one-liner fix is to take the upstream series that cleans this all up:
68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies")
20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing")
adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies")
with either the whole series or at a minimum the two marked commits being needed to fix this issue ]