The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade Amazon-Linux:2023
kernel-libbpf-static
to version 0:6.1.90-99.173.amzn2023 or higher.
This issue was patched in ALAS2023-2024-695
.
Note: Versions mentioned in the description apply only to the upstream kernel-libbpf-static
package and not the kernel-libbpf-static
package as distributed by Amazon-Linux
.
See How to fix?
for Amazon-Linux:2023
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/pmu: Disable support for adaptive PEBS
Drop support for virtualizing adaptive PEBS, as KVM's implementation is architecturally broken without an obvious/easy path forward, and because exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak host kernel addresses to the guest.
Bug #1 is that KVM doesn't account for the upper 32 bits of IA32_FIXED_CTR_CTRL when (re)programming fixed counters, e.g fixed_ctrl_field() drops the upper bits, reprogram_fixed_counters() stores local variables as u8s and truncates the upper bits too, etc.
Bug #2 is that, because KVM always sets precise_ip to a non-zero value for PEBS events, perf will always generate an adaptive record, even if the guest requested a basic record. Note, KVM will also enable adaptive PEBS in individual counter, even if adaptive PEBS isn't exposed to the guest, but this is benign as MSR_PEBS_DATA_CFG is guaranteed to be zero, i.e. the guest will only ever see Basic records.
Bug #3 is in perf. intel_pmu_disable_fixed() doesn't clear the upper bits either, i.e. leaves ICL_FIXED_0_ADAPTIVE set, and intel_pmu_enable_fixed() effectively doesn't clear ICL_FIXED_0_ADAPTIVE either. I.e. perf always enables ADAPTIVE counters, regardless of what KVM requests.
Bug #4 is that adaptive PEBS might effectively bypass event filters set by the host, as "Updated Memory Access Info Group" records information that might be disallowed by userspace via KVM_SET_PMU_EVENT_FILTER.
Bug #5 is that KVM doesn't ensure LBR MSRs hold guest values (or at least zeros) when entering a vCPU with adaptive PEBS, which allows the guest to read host LBRs, i.e. host RIPs/addresses, by enabling "LBR Entries" records.
Disable adaptive PEBS support as an immediate fix due to the severity of the LBR leak in particular, and because fixing all of the bugs will be non-trivial, e.g. not suitable for backporting to stable kernels.
Note! This will break live migration, but trying to make KVM play nice with live migration would be quite complicated, wouldn't be guaranteed to work (i.e. KVM might still kill/confuse the guest), and it's not clear that there are any publicly available VMMs that support adaptive PEBS, let alone live migrate VMs that support adaptive PEBS, e.g. QEMU doesn't support PEBS in any capacity.