The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:6
kernel-kdump
.
Note: Versions mentioned in the description apply only to the upstream kernel-kdump
package and not the kernel-kdump
package as distributed by Centos
.
See How to fix?
for Centos:6
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: get rid of warning on transaction commit when using flushoncommit
When using the flushoncommit mount option, during almost every transaction commit we trigger a warning from __writeback_inodes_sb_nr():
$ cat fs/fs-writeback.c: (...) static void __writeback_inodes_sb_nr(struct super_block *sb, ... { (...) WARN_ON(!rwsem_is_locked(&sb->s_umount)); (...) } (...)
The trace produced in dmesg looks like the following:
[947.473890] WARNING: CPU: 5 PID: 930 at fs/fs-writeback.c:2610 __writeback_inodes_sb_nr+0x7e/0xb3 [947.481623] Modules linked in: nfsd nls_cp437 cifs asn1_decoder cifs_arc4 fscache cifs_md4 ipmi_ssif [947.489571] CPU: 5 PID: 930 Comm: btrfs-transacti Not tainted 95.16.3-srb-asrock-00001-g36437ad63879 #186 [947.497969] RIP: 0010:__writeback_inodes_sb_nr+0x7e/0xb3 [947.502097] Code: 24 10 4c 89 44 24 18 c6 (...) [947.519760] RSP: 0018:ffffc90000777e10 EFLAGS: 00010246 [947.523818] RAX: 0000000000000000 RBX: 0000000000963300 RCX: 0000000000000000 [947.529765] RDX: 0000000000000000 RSI: 000000000000fa51 RDI: ffffc90000777e50 [947.535740] RBP: ffff888101628a90 R08: ffff888100955800 R09: ffff888100956000 [947.541701] R10: 0000000000000002 R11: 0000000000000001 R12: ffff888100963488 [947.547645] R13: ffff888100963000 R14: ffff888112fb7200 R15: ffff888100963460 [947.553621] FS: 0000000000000000(0000) GS:ffff88841fd40000(0000) knlGS:0000000000000000 [947.560537] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [947.565122] CR2: 0000000008be50c4 CR3: 000000000220c000 CR4: 00000000001006e0 [947.571072] Call Trace: [947.572354] <TASK> [947.573266] btrfs_commit_transaction+0x1f1/0x998 [947.576785] ? start_transaction+0x3ab/0x44e [947.579867] ? schedule_timeout+0x8a/0xdd [947.582716] transaction_kthread+0xe9/0x156 [947.585721] ? btrfs_cleanup_transaction.isra.0+0x407/0x407 [947.590104] kthread+0x131/0x139 [947.592168] ? set_kthread_struct+0x32/0x32 [947.595174] ret_from_fork+0x22/0x30 [947.597561] </TASK> [947.598553] ---[ end trace 644721052755541c ]---
This is because we started using writeback_inodes_sb() to flush delalloc when committing a transaction (when using -o flushoncommit), in order to avoid deadlocks with filesystem freeze operations. This change was made by commit ce8ea7cc6eb313 ("btrfs: don't call btrfs_start_delalloc_roots in flushoncommit"). After that change we started producing that warning, and every now and then a user reports this since the warning happens too often, it spams dmesg/syslog, and a user is unsure if this reflects any problem that might compromise the filesystem's reliability.
We can not just lock the sb->s_umount semaphore before calling writeback_inodes_sb(), because that would at least deadlock with filesystem freezing, since at fs/super.c:freeze_super() sync_filesystem() is called while we are holding that semaphore in write mode, and that can trigger a transaction commit, resulting in a deadlock. It would also trigger the same type of deadlock in the unmount path. Possibly, it could also introduce some other locking dependencies that lockdep would report.
To fix this call try_to_writeback_inodes_sb() instead of writeback_inodes_sb(), because that will try to read lock sb->s_umount and then will only call writeback_inodes_sb() if it was able to lock it. This is fine because the cases where it can't read lock sb->s_umount are during a filesystem unmount or during a filesystem freeze - in those cases sb->s_umount is write locked and sync_filesystem() is called, which calls writeback_inodes_sb(). In other words, in all cases where we can't take a read lock on sb->s_umount, writeback is already being triggered elsewhere.
An alternative would be to call btrfs_start_delalloc_roots() with a number of pages different from LONG_MAX, for example matching the number of delalloc bytes we currently have, in ---truncated---