The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:6
nss
.
Note: Versions mentioned in the description apply only to the upstream nss
package and not the nss
package as distributed by Centos
.
See How to fix?
for Centos:6
relevant fixed versions and status.
The NSS code used for checking PKCS#1 v1.5 was leaking information useful in mounting Bleichenbacher-like attacks. Both the overall correctness of the padding as well as the length of the encrypted message was leaking through timing side-channel. By sending large number of attacker-selected ciphertexts, the attacker would be able to decrypt a previously intercepted PKCS#1 v1.5 ciphertext (for example, to decrypt a TLS session that used RSA key exchange), or forge a signature using the victim's key. The issue was fixed by implementing the implicit rejection algorithm, in which the NSS returns a deterministic random message in case invalid padding is detected, as proposed in the Marvin Attack paper. This vulnerability affects NSS < 3.61.