The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsLearn about Improper Authentication vulnerabilities in an interactive lesson.
Start learningThere is no fixed version for Centos:6
thunderbird
.
Note: Versions mentioned in the description apply only to the upstream thunderbird
package and not the thunderbird
package as distributed by Centos
.
See How to fix?
for Centos:6
relevant fixed versions and status.
Matrix JavaScript SDK is the Matrix Client-Server software development kit (SDK) for JavaScript. Prior to version 19.7.0, an attacker cooperating with a malicious homeserver could interfere with the verification flow between two users, injecting its own cross-signing user identity in place of one of the users’ identities. This would lead to the other device trusting/verifying the user identity under the control of the homeserver instead of the intended one. The vulnerability is a bug in the matrix-js-sdk, caused by checking and signing user identities and devices in two separate steps, and inadequately fixing the keys to be signed between those steps. Even though the attack is partly made possible due to the design decision of treating cross-signing user identities as Matrix devices on the server side (with their device ID set to the public part of the user identity key), no other examined implementations were vulnerable. Starting with version 19.7.0, the matrix-js-sdk has been modified to double check that the key signed is the one that was verified instead of just referencing the key by ID. An additional check has been made to report an error when one of the device ID matches a cross-signing key. As this attack requires coordination between a malicious homeserver and an attacker, those who trust their homeservers do not need a particular workaround.