CVE-2022-49272 Affecting kernel-kdump package, versions *


Severity

Recommended
0.0
medium
0
10

Based on CentOS security rating.

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications
  • Snyk IDSNYK-CENTOS7-KERNELKDUMP-8855511
  • published28 Feb 2025
  • disclosed26 Feb 2025

Introduced: 26 Feb 2025

NewCVE-2022-49272  (opens in a new tab)

How to fix?

There is no fixed version for Centos:7 kernel-kdump.

NVD Description

Note: Versions mentioned in the description apply only to the upstream kernel-kdump package and not the kernel-kdump package as distributed by Centos. See How to fix? for Centos:7 relevant fixed versions and status.

In the Linux kernel, the following vulnerability has been resolved:

ALSA: pcm: Fix potential AB/BA lock with buffer_mutex and mmap_lock

syzbot caught a potential deadlock between the PCM runtime->buffer_mutex and the mm->mmap_lock. It was brought by the recent fix to cover the racy read/write and other ioctls, and in that commit, I overlooked a (hopefully only) corner case that may take the revert lock, namely, the OSS mmap. The OSS mmap operation exceptionally allows to re-configure the parameters inside the OSS mmap syscall, where mm->mmap_mutex is already held. Meanwhile, the copy_from/to_user calls at read/write operations also take the mm->mmap_lock internally, hence it may lead to a AB/BA deadlock.

A similar problem was already seen in the past and we fixed it with a refcount (in commit b248371628aa). The former fix covered only the call paths with OSS read/write and OSS ioctls, while we need to cover the concurrent access via both ALSA and OSS APIs now.

This patch addresses the problem above by replacing the buffer_mutex lock in the read/write operations with a refcount similar as we've used for OSS. The new field, runtime->buffer_accessing, keeps the number of concurrent read/write operations. Unlike the former buffer_mutex protection, this protects only around the copy_from/to_user() calls; the other codes are basically protected by the PCM stream lock. The refcount can be a negative, meaning blocked by the ioctls. If a negative value is seen, the read/write aborts with -EBUSY. In the ioctl side, OTOH, they check this refcount, too, and set to a negative value for blocking unless it's already being accessed.

CVSS Scores

version 3.1