The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9
edk2-ovmf
.
Note: Versions mentioned in the description apply only to the upstream edk2-ovmf
package and not the edk2-ovmf
package as distributed by Centos
.
See How to fix?
for Centos:9
relevant fixed versions and status.
Issue summary: Checking excessively long invalid RSA public keys may take a long time.
Impact summary: Applications that use the function EVP_PKEY_public_check() to check RSA public keys may experience long delays. Where the key that is being checked has been obtained from an untrusted source this may lead to a Denial of Service.
When function EVP_PKEY_public_check() is called on RSA public keys, a computation is done to confirm that the RSA modulus, n, is composite. For valid RSA keys, n is a product of two or more large primes and this computation completes quickly. However, if n is an overly large prime, then this computation would take a long time.
An application that calls EVP_PKEY_public_check() and supplies an RSA key obtained from an untrusted source could be vulnerable to a Denial of Service attack.
The function EVP_PKEY_public_check() is not called from other OpenSSL functions however it is called from the OpenSSL pkey command line application. For that reason that application is also vulnerable if used with the '-pubin' and '-check' options on untrusted data.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are affected by this issue.