The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9
kernel-64k-debug-modules-extra
.
Note: Versions mentioned in the description apply only to the upstream kernel-64k-debug-modules-extra
package and not the kernel-64k-debug-modules-extra
package as distributed by Centos
.
See How to fix?
for Centos:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
vdpa_sim_blk: set number of address spaces and virtqueue groups
Commit bda324fd037a ("vdpasim: control virtqueue support") added two new fields (nas, ngroups) to vdpasim_dev_attr, but we forgot to initialize them for vdpa_sim_blk.
When creating a new vdpa_sim_blk device this causes the kernel to panic in this way: $ vdpa dev add mgmtdev vdpasim_blk name blk0 BUG: kernel NULL pointer dereference, address: 0000000000000030 ... RIP: 0010:vhost_iotlb_add_range_ctx+0x41/0x220 [vhost_iotlb] ... Call Trace: <TASK> vhost_iotlb_add_range+0x11/0x800 [vhost_iotlb] vdpasim_map_range+0x91/0xd0 [vdpa_sim] vdpasim_alloc_coherent+0x56/0x90 [vdpa_sim] ...
This happens because vdpasim->iommu[0] is not initialized when dev_attr.nas is 0.
Let's fix this issue by initializing both (nas, ngroups) to 1 for vdpa_sim_blk.