The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9
kernel-modules-internal
.
Note: Versions mentioned in the description apply only to the upstream kernel-modules-internal
package and not the kernel-modules-internal
package as distributed by Centos
.
See How to fix?
for Centos:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Convert spinlock to mutex to lock evl workqueue
drain_workqueue() cannot be called safely in a spinlocked context due to possible task rescheduling. In the multi-task scenario, calling queue_work() while drain_workqueue() will lead to a Call Trace as pushing a work on a draining workqueue is not permitted in spinlocked context. Call Trace: <TASK> ? __warn+0x7d/0x140 ? __queue_work+0x2b2/0x440 ? report_bug+0x1f8/0x200 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? __queue_work+0x2b2/0x440 queue_work_on+0x28/0x30 idxd_misc_thread+0x303/0x5a0 [idxd] ? __schedule+0x369/0xb40 ? __pfx_irq_thread_fn+0x10/0x10 ? irq_thread+0xbc/0x1b0 irq_thread_fn+0x21/0x70 irq_thread+0x102/0x1b0 ? preempt_count_add+0x74/0xa0 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0x103/0x140 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK>
The current implementation uses a spinlock to protect event log workqueue and will lead to the Call Trace due to potential task rescheduling.
To address the locking issue, convert the spinlock to mutex, allowing the drain_workqueue() to be called in a safe mutex-locked context.
This change ensures proper synchronization when accessing the event log workqueue, preventing potential Call Trace and improving the overall robustness of the code.