In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9
kernel-rt-core
.
Note: Versions mentioned in the description apply only to the upstream kernel-rt-core
package and not the kernel-rt-core
package as distributed by Centos
.
See How to fix?
for Centos:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix kmemleak warning for percpu hashmap
Vlad Poenaru reported the following kmemleak issue:
unreferenced object 0x606fd7c44ac8 (size 32): backtrace (crc 0): pcpu_alloc_noprof+0x730/0xeb0 bpf_map_alloc_percpu+0x69/0xc0 prealloc_init+0x9d/0x1b0 htab_map_alloc+0x363/0x510 map_create+0x215/0x3a0 __sys_bpf+0x16b/0x3e0 __x64_sys_bpf+0x18/0x20 do_syscall_64+0x7b/0x150 entry_SYSCALL_64_after_hwframe+0x4b/0x53
Further investigation shows the reason is due to not 8-byte aligned store of percpu pointer in htab_elem_set_ptr(): *(void __percpu **)(l->key + key_size) = pptr;
Note that the whole htab_elem alignment is 8 (for x86_64). If the key_size is 4, that means pptr is stored in a location which is 4 byte aligned but not 8 byte aligned. In mm/kmemleak.c, scan_block() scans the memory based on 8 byte stride, so it won't detect above pptr, hence reporting the memory leak.
In htab_map_alloc(), we already have
htab->elem_size = sizeof(struct htab_elem) +
round_up(htab->map.key_size, 8);
if (percpu)
htab->elem_size += sizeof(void *);
else
htab->elem_size += round_up(htab->map.value_size, 8);
So storing pptr with 8-byte alignment won't cause any problem and can fix kmemleak too.
The issue can be reproduced with bpf selftest as well: