The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9
kernel-zfcpdump-devel
.
Note: Versions mentioned in the description apply only to the upstream kernel-zfcpdump-devel
package and not the kernel-zfcpdump-devel
package as distributed by Centos
.
See How to fix?
for Centos:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: seville: register the mdiobus under devres
As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered.
The Seville VSC9959 switch is a platform device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the seville switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all.
The seville driver has a code structure that could accommodate both the mdiobus_unregister and mdiobus_free calls, but it has an external dependency upon mscc_miim_setup() from mdio-mscc-miim.c, which calls devm_mdiobus_alloc_size() on its behalf. So rather than restructuring that, and exporting yet one more symbol mscc_miim_teardown(), let's work with devres and replace of_mdiobus_register with the devres variant. When we use all-devres, we can ensure that devres doesn't free a still-registered bus (it either runs both callbacks, or none).