In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9
libperf
.
Note: Versions mentioned in the description apply only to the upstream libperf
package and not the libperf
package as distributed by Centos
.
See How to fix?
for Centos:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
bpf: reject unhashed sockets in bpf_sk_assign
The semantics for bpf_sk_assign are as follows:
sk = some_lookup_func()
bpf_sk_assign(skb, sk)
bpf_sk_release(sk)
That is, the sk is not consumed by bpf_sk_assign. The function therefore needs to make sure that sk lives long enough to be consumed from __inet_lookup_skb. The path through the stack for a TCPv4 packet is roughly:
netif_receive_skb_core: takes RCU read lock __netif_receive_skb_core: sch_handle_ingress: tcf_classify: bpf_sk_assign() deliver_ptype_list_skb: deliver_skb: ip_packet_type->func == ip_rcv: ip_rcv_core: ip_rcv_finish_core: dst_input: ip_local_deliver: ip_local_deliver_finish: ip_protocol_deliver_rcu: tcp_v4_rcv: __inet_lookup_skb: skb_steal_sock
The existing helper takes advantage of the fact that everything happens in the same RCU critical section: for sockets with SOCK_RCU_FREE set bpf_sk_assign never takes a reference. skb_steal_sock then checks SOCK_RCU_FREE again and does sock_put if necessary.
This approach assumes that SOCK_RCU_FREE is never set on a sk between bpf_sk_assign and skb_steal_sock, but this invariant is violated by unhashed UDP sockets. A new UDP socket is created in TCP_CLOSE state but without SOCK_RCU_FREE set. That flag is only added in udp_lib_get_port() which happens when a socket is bound.
When bpf_sk_assign was added it wasn't possible to access unhashed UDP sockets from BPF, so this wasn't a problem. This changed in commit 0c48eefae712 ("sock_map: Lift socket state restriction for datagram sockets"), but the helper wasn't adjusted accordingly. The following sequence of events will therefore lead to a refcount leak:
Fix the problem by rejecting unhashed sockets in bpf_sk_assign(). This matches the behaviour of __inet_lookup_skb which is ultimately the goal of bpf_sk_assign().