The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9
python3-perf
.
Note: Versions mentioned in the description apply only to the upstream python3-perf
package and not the python3-perf
package as distributed by Centos
.
See How to fix?
for Centos:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: Do a runtime PM get on controllers during probe
mt8183-mfgcfg has a mutual dependency with genpd during the probing stage, which leads to a deadlock in the following call stack:
CPU0: genpd_lock --> clk_prepare_lock genpd_power_off_work_fn() genpd_lock() generic_pm_domain::power_off() clk_unprepare() clk_prepare_lock()
CPU1: clk_prepare_lock --> genpd_lock clk_register() __clk_core_init() clk_prepare_lock() clk_pm_runtime_get() genpd_lock()
Do a runtime PM get at the probe function to make sure clk_register() won't acquire the genpd lock. Instead of only modifying mt8183-mfgcfg, do this on all mediatek clock controller probings because we don't believe this would cause any regression.
Verified on MT8183 and MT8192 Chromebooks.