The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9 rv.
Note: Versions mentioned in the description apply only to the upstream rv package and not the rv package as distributed by Centos.
See How to fix? for Centos:9 relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
crash: fix crashkernel resource shrink
When crashkernel is configured with a high reservation, shrinking its value below the low crashkernel reservation causes two issues:
For example, with crashkernel=200M,high, the kernel reserves 200MB of high memory and some default low memory (say 256MB). The reservation appears as:
cat /proc/iomem | grep -i crash af000000-beffffff : Crash kernel 433000000-43f7fffff : Crash kernel
If crashkernel is then shrunk to 50MB (echo 52428800 > /sys/kernel/kexec_crash_size), /proc/iomem still shows 256MB reserved: af000000-beffffff : Crash kernel
Instead, it should show 50MB: af000000-b21fffff : Crash kernel
Further shrinking crashkernel to 40MB causes a kernel crash with the following trace (x86):
BUG: kernel NULL pointer dereference, address: 0000000000000038 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI <snip...> Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2f0 ? search_module_extables+0x19/0x60 ? search_bpf_extables+0x5f/0x80 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? __release_resource+0xd/0xb0 release_resource+0x26/0x40 __crash_shrink_memory+0xe5/0x110 crash_shrink_memory+0x12a/0x190 kexec_crash_size_store+0x41/0x80 kernfs_fop_write_iter+0x141/0x1f0 vfs_write+0x294/0x460 ksys_write+0x6d/0xf0 <snip...>
This happens because __crash_shrink_memory()/kernel/crash_core.c incorrectly updates the crashk_res resource object even when crashk_low_res should be updated.
Fix this by ensuring the correct crashkernel resource object is updated when shrinking crashkernel memory.