The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for Centos:9 rv.
Note: Versions mentioned in the description apply only to the upstream rv package and not the rv package as distributed by Centos.
See How to fix? for Centos:9 relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
opp: Fix use-after-free in lazy_opp_tables after probe deferral
When dev_pm_opp_of_find_icc_paths() in _allocate_opp_table() returns -EPROBE_DEFER, the opp_table is freed again, to wait until all the interconnect paths are available.
However, if the OPP table is using required-opps then it may already have been added to the global lazy_opp_tables list. The error path does not remove the opp_table from the list again.
This can cause crashes later when the provider of the required-opps is added, since we will iterate over OPP tables that have already been freed. E.g.:
Unable to handle kernel NULL pointer dereference when read CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.4.0-rc3 PC is at _of_add_opp_table_v2 (include/linux/of.h:949 drivers/opp/of.c:98 drivers/opp/of.c:344 drivers/opp/of.c:404 drivers/opp/of.c:1032) -> lazy_link_required_opp_table()
Fix this by calling _of_clear_opp_table() to remove the opp_table from the list and clear other allocated resources. While at it, also add the missing mutex_destroy() calls in the error path.