The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade Chainguard
zellij
to version 0.41.2-r2 or higher.
Note: Versions mentioned in the description apply only to the upstream zellij
package and not the zellij
package as distributed by Chainguard
.
See How to fix?
for Chainguard
relevant fixed versions and status.
Mio is a Metal I/O library for Rust. When using named pipes on Windows, mio will under some circumstances return invalid tokens that correspond to named pipes that have already been deregistered from the mio registry. The impact of this vulnerability depends on how mio is used. For some applications, invalid tokens may be ignored or cause a warning or a crash. On the other hand, for applications that store pointers in the tokens, this vulnerability may result in a use-after-free. For users of Tokio, this vulnerability is serious and can result in a use-after-free in Tokio. The vulnerability is Windows-specific, and can only happen if you are using named pipes. Other IO resources are not affected. This vulnerability has been fixed in mio v0.8.11. All versions of mio between v0.7.2 and v0.8.10 are vulnerable. Tokio is vulnerable when you are using a vulnerable version of mio AND you are using at least Tokio v1.30.0. Versions of Tokio prior to v1.30.0 will ignore invalid tokens, so they are not vulnerable. Vulnerable libraries that use mio can work around this issue by detecting and ignoring invalid tokens.