The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade Oracle:9
kernel-abi-stablelists
to version 0:5.14.0-503.11.1.el9_5 or higher.
This issue was patched in ELSA-2024-9315
.
Note: Versions mentioned in the description apply only to the upstream kernel-abi-stablelists
package and not the kernel-abi-stablelists
package as distributed by Oracle
.
See How to fix?
for Oracle:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix slab-use-after-free in fscache_withdraw_volume()
We got the following issue in our fault injection stress test:
================================================================== BUG: KASAN: slab-use-after-free in fscache_withdraw_volume+0x2e1/0x370 Read of size 4 at addr ffff88810680be08 by task ondemand-04-dae/5798
CPU: 0 PID: 5798 Comm: ondemand-04-dae Not tainted 6.8.0-dirty #565 Call Trace: kasan_check_range+0xf6/0x1b0 fscache_withdraw_volume+0x2e1/0x370 cachefiles_withdraw_volume+0x31/0x50 cachefiles_withdraw_cache+0x3ad/0x900 cachefiles_put_unbind_pincount+0x1f6/0x250 cachefiles_daemon_release+0x13b/0x290 __fput+0x204/0xa00 task_work_run+0x139/0x230
Allocated by task 5820: __kmalloc+0x1df/0x4b0 fscache_alloc_volume+0x70/0x600 __fscache_acquire_volume+0x1c/0x610 erofs_fscache_register_volume+0x96/0x1a0 erofs_fscache_register_fs+0x49a/0x690 erofs_fc_fill_super+0x6c0/0xcc0 vfs_get_super+0xa9/0x140 vfs_get_tree+0x8e/0x300 do_new_mount+0x28c/0x580 [...]
Following is the process that triggers the issue:
mount failed | daemon exit
deactivate_locked_super cachefiles_daemon_release erofs_kill_sb erofs_fscache_unregister_fs fscache_relinquish_volume __fscache_relinquish_volume fscache_put_volume(fscache_volume, fscache_volume_put_relinquish) zero = __refcount_dec_and_test(&fscache_volume->ref, &ref); cachefiles_put_unbind_pincount cachefiles_daemon_unbind cachefiles_withdraw_cache cachefiles_withdraw_volumes list_del_init(&volume->cache_link) fscache_free_volume(fscache_volume) cache->ops->free_volume cachefiles_free_volume list_del_init(&cachefiles_volume->cache_link); kfree(fscache_volume) cachefiles_withdraw_volume fscache_withdraw_volume fscache_volume->n_accesses // fscache_volume UAF !!!
The fscache_volume in cache->volumes must not have been freed yet, but its reference count may be 0. So use the new fscache_try_get_volume() helper function try to get its reference count.
If the reference count of fscache_volume is 0, fscache_put_volume() is freeing it, so wait for it to be removed from cache->volumes.
If its reference count is not 0, call cachefiles_withdraw_volume() with reference count protection to avoid the above issue.