CVE-2023-52474 Affecting kernel-abi-whitelists package, versions *


Severity

Recommended
low

Based on Red Hat Enterprise Linux security rating.

Threat Intelligence

EPSS
0.04% (6th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications
  • Snyk IDSNYK-RHEL7-KERNELABIWHITELISTS-6280696
  • published27 Feb 2024
  • disclosed26 Feb 2024

Introduced: 26 Feb 2024

CVE-2023-52474  (opens in a new tab)

How to fix?

There is no fixed version for RHEL:7 kernel-abi-whitelists.

NVD Description

Note: Versions mentioned in the description apply only to the upstream kernel-abi-whitelists package and not the kernel-abi-whitelists package as distributed by RHEL. See How to fix? for RHEL:7 relevant fixed versions and status.

In the Linux kernel, the following vulnerability has been resolved:

IB/hfi1: Fix bugs with non-PAGE_SIZE-end multi-iovec user SDMA requests

hfi1 user SDMA request processing has two bugs that can cause data corruption for user SDMA requests that have multiple payload iovecs where an iovec other than the tail iovec does not run up to the page boundary for the buffer pointed to by that iovec.a

Here are the specific bugs:

  1. user_sdma_txadd() does not use struct user_sdma_iovec->iov.iov_len. Rather, user_sdma_txadd() will add up to PAGE_SIZE bytes from iovec to the packet, even if some of those bytes are past iovec->iov.iov_len and are thus not intended to be in the packet.
  2. user_sdma_txadd() and user_sdma_send_pkts() fail to advance to the next iovec in user_sdma_request->iovs when the current iovec is not PAGE_SIZE and does not contain enough data to complete the packet. The transmitted packet will contain the wrong data from the iovec pages.

This has not been an issue with SDMA packets from hfi1 Verbs or PSM2 because they only produce iovecs that end short of PAGE_SIZE as the tail iovec of an SDMA request.

Fixing these bugs exposes other bugs with the SDMA pin cache (struct mmu_rb_handler) that get in way of supporting user SDMA requests with multiple payload iovecs whose buffers do not end at PAGE_SIZE. So this commit fixes those issues as well.

Here are the mmu_rb_handler bugs that non-PAGE_SIZE-end multi-iovec payload user SDMA requests can hit:

  1. Overlapping memory ranges in mmu_rb_handler will result in duplicate pinnings.

  2. When extending an existing mmu_rb_handler entry (struct mmu_rb_node), the mmu_rb code (1) removes the existing entry under a lock, (2) releases that lock, pins the new pages, (3) then reacquires the lock to insert the extended mmu_rb_node.

    If someone else comes in and inserts an overlapping entry between (2) and (3), insert in (3) will fail.

    The failure path code in this case unpins all pages in either the original mmu_rb_node or the new mmu_rb_node that was inserted between (2) and (3).

  3. In hfi1_mmu_rb_remove_unless_exact(), mmu_rb_node->refcount is incremented outside of mmu_rb_handler->lock. As a result, mmu_rb_node could be evicted by another thread that gets mmu_rb_handler->lock and checks mmu_rb_node->refcount before mmu_rb_node->refcount is incremented.

  4. Related to #2 above, SDMA request submission failure path does not check mmu_rb_node->refcount before freeing mmu_rb_node object.

    If there are other SDMA requests in progress whose iovecs have pointers to the now-freed mmu_rb_node(s), those pointers to the now-freed mmu_rb nodes will be dereferenced when those SDMA requests complete.

CVSS Scores

version 3.1