In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for RHEL:7
kernel-devel
.
Note: Versions mentioned in the description apply only to the upstream kernel-devel
package and not the kernel-devel
package as distributed by RHEL
.
See How to fix?
for RHEL:7
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
mm/slub: add missing TID updates on slab deactivation
The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab.
If multiple operations race the right way, this could lead to an object
getting lost; or, in an even more unlikely situation, it could even lead to
an object being freed onto the wrong slab's freelist, messing up the
inuse
counter and eventually causing a page to be freed to the page
allocator while it still contains slab objects.
(I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...)
The race leading to state inconsistency is (all operations on the same CPU and kmem_cache):
slab == c->slab
(true)c->freelist
is NULL)c->slab = NULL
From there, the object on c->freelist will get lost if task B is allowed to continue from here: It will proceed to the retry_load_slab label, set c->slab, then jump to load_freelist, which clobbers c->freelist.
But if we instead continue as follows, we get worse corruption:
At this point, the inuse count of slab-1 is 1 lower than it should be. This means that if we free all allocated objects in slab-1 except for one, SLUB will think that slab-1 is completely unused, and may free its page, leading to use-after-free.