CVE-2023-52497 Affecting kernel-rt package, versions *


Severity

Recommended
0.0
medium
0
10

Based on Red Hat Enterprise Linux security rating

    Threat Intelligence

    EPSS
    0.04% (12th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications
  • Snyk ID SNYK-RHEL7-KERNELRT-6356121
  • published 2 Mar 2024
  • disclosed 29 Feb 2024

How to fix?

There is no fixed version for RHEL:7 kernel-rt.

NVD Description

Note: Versions mentioned in the description apply only to the upstream kernel-rt package and not the kernel-rt package as distributed by RHEL. See How to fix? for RHEL:7 relevant fixed versions and status.

In the Linux kernel, the following vulnerability has been resolved:

erofs: fix lz4 inplace decompression

Currently EROFS can map another compressed buffer for inplace decompression, that was used to handle the cases that some pages of compressed data are actually not in-place I/O.

However, like most simple LZ77 algorithms, LZ4 expects the compressed data is arranged at the end of the decompressed buffer and it explicitly uses memmove() to handle overlapping:


|_ direction of decompression --> ____ |_ compressed data _|

Although EROFS arranges compressed data like this, it typically maps two individual virtual buffers so the relative order is uncertain. Previously, it was hardly observed since LZ4 only uses memmove() for short overlapped literals and x86/arm64 memmove implementations seem to completely cover it up and they don't have this issue. Juhyung reported that EROFS data corruption can be found on a new Intel x86 processor. After some analysis, it seems that recent x86 processors with the new FSRM feature expose this issue with "rep movsb".

Let's strictly use the decompressed buffer for lz4 inplace decompression for now. Later, as an useful improvement, we could try to tie up these two buffers together in the correct order.

CVSS Scores

version 3.1
Expand this section

Red Hat

5.5 medium
  • Attack Vector (AV)
    Local
  • Attack Complexity (AC)
    Low
  • Privileges Required (PR)
    Low
  • User Interaction (UI)
    None
  • Scope (S)
    Unchanged
  • Confidentiality (C)
    None
  • Integrity (I)
    None
  • Availability (A)
    High
Expand this section

SUSE

4.4 medium