Memory Leak Affecting kernel-rt-debug package, versions *


Severity

Recommended
0.0
medium
0
10

Based on Red Hat Enterprise Linux security rating.

Threat Intelligence

EPSS
0.04% (12th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications

Snyk Learn

Learn about Memory Leak vulnerabilities in an interactive lesson.

Start learning
  • Snyk IDSNYK-RHEL7-KERNELRTDEBUG-8417364
  • published26 Nov 2024
  • disclosed9 Nov 2024

Introduced: 9 Nov 2024

CVE-2024-50254  (opens in a new tab)
CWE-401  (opens in a new tab)

How to fix?

There is no fixed version for RHEL:7 kernel-rt-debug.

NVD Description

Note: Versions mentioned in the description apply only to the upstream kernel-rt-debug package and not the kernel-rt-debug package as distributed by RHEL. See How to fix? for RHEL:7 relevant fixed versions and status.

In the Linux kernel, the following vulnerability has been resolved:

bpf: Free dynamically allocated bits in bpf_iter_bits_destroy()

bpf_iter_bits_destroy() uses "kit->nr_bits <= 64" to check whether the bits are dynamically allocated. However, the check is incorrect and may cause a kmemleak as shown below:

unreferenced object 0xffff88812628c8c0 (size 32): comm "swapper/0", pid 1, jiffies 4294727320 hex dump (first 32 bytes): b0 c1 55 f5 81 88 ff ff f0 f0 f0 f0 f0 f0 f0 f0 ..U........... f0 f0 f0 f0 f0 f0 f0 f0 00 00 00 00 00 00 00 00 .............. backtrace (crc 781e32cc): [<00000000c452b4ab>] kmemleak_alloc+0x4b/0x80 [<0000000004e09f80>] __kmalloc_node_noprof+0x480/0x5c0 [<00000000597124d6>] __alloc.isra.0+0x89/0xb0 [<000000004ebfffcd>] alloc_bulk+0x2af/0x720 [<00000000d9c10145>] prefill_mem_cache+0x7f/0xb0 [<00000000ff9738ff>] bpf_mem_alloc_init+0x3e2/0x610 [<000000008b616eac>] bpf_global_ma_init+0x19/0x30 [<00000000fc473efc>] do_one_initcall+0xd3/0x3c0 [<00000000ec81498c>] kernel_init_freeable+0x66a/0x940 [<00000000b119f72f>] kernel_init+0x20/0x160 [<00000000f11ac9a7>] ret_from_fork+0x3c/0x70 [<0000000004671da4>] ret_from_fork_asm+0x1a/0x30

That is because nr_bits will be set as zero in bpf_iter_bits_next() after all bits have been iterated.

Fix the issue by setting kit->bit to kit->nr_bits instead of setting kit->nr_bits to zero when the iteration completes in bpf_iter_bits_next(). In addition, use "!nr_bits || bits >= nr_bits" to check whether the iteration is complete and still use "nr_bits > 64" to indicate whether bits are dynamically allocated. The "!nr_bits" check is necessary because bpf_iter_bits_new() may fail before setting kit->nr_bits, and this condition will stop the iteration early instead of accessing the zeroed or freed kit->bits.

Considering the initial value of kit->bits is -1 and the type of kit->nr_bits is unsigned int, change the type of kit->nr_bits to int. The potential overflow problem will be handled in the following patch.

CVSS Scores

version 3.1