In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for RHEL:9
kernel-64k-devel
.
Note: Versions mentioned in the description apply only to the upstream kernel-64k-devel
package and not the kernel-64k-devel
package as distributed by RHEL
.
See How to fix?
for RHEL:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
ptp: remove ptp->n_vclocks check logic in ptp_vclock_in_use()
There is no disagreement that we should check both ptp->is_virtual_clock and ptp->n_vclocks to check if the ptp virtual clock is in use.
However, when we acquire ptp->n_vclocks_mux to read ptp->n_vclocks in ptp_vclock_in_use(), we observe a recursive lock in the call trace starting from n_vclocks_store().
syz.0.1540/13807 is trying to acquire lock: ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: ptp_vclock_in_use drivers/ptp/ptp_private.h:103 [inline] ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: ptp_clock_unregister+0x21/0x250 drivers/ptp/ptp_clock.c:415
but task is already holding lock: ffff888030704868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: n_vclocks_store+0xf1/0x6d0 drivers/ptp/ptp_sysfs.c:215
other info that might help us debug this: Possible unsafe locking scenario:
CPU0
----
lock(&ptp->n_vclocks_mux); lock(&ptp->n_vclocks_mux);
The best way to solve this is to remove the logic that checks ptp->n_vclocks in ptp_vclock_in_use().
The reason why this is appropriate is that any path that uses ptp->n_vclocks must unconditionally check if ptp->n_vclocks is greater than 0 before unregistering vclocks, and all functions are already written this way. And in the function that uses ptp->n_vclocks, we already get ptp->n_vclocks_mux before unregistering vclocks.
Therefore, we need to remove the redundant check for ptp->n_vclocks in ptp_vclock_in_use() to prevent recursive locking.