In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for RHEL:9
kernel-64k-modules
.
Note: Versions mentioned in the description apply only to the upstream kernel-64k-modules
package and not the kernel-64k-modules
package as distributed by RHEL
.
See How to fix?
for RHEL:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Restrict conditions for adding duplicating netems to qdisc tree
netem_enqueue's duplication prevention logic breaks when a netem resides in a qdisc tree with other netems - this can lead to a soft lockup and OOM loop in netem_dequeue, as seen in [1]. Ensure that a duplicating netem cannot exist in a tree with other netems.
Previous approaches suggested in discussions in chronological order:
Track duplication status or ttl in the sk_buff struct. Considered too specific a use case to extend such a struct, though this would be a resilient fix and address other previous and potential future DOS bugs like the one described in loopy fun [2].
Restrict netem_enqueue recursion depth like in act_mirred with a per cpu variable. However, netem_dequeue can call enqueue on its child, and the depth restriction could be bypassed if the child is a netem.
Use the same approach as in 2, but add metadata in netem_skb_cb to handle the netem_dequeue case and track a packet's involvement in duplication. This is an overly complex approach, and Jamal notes that the skb cb can be overwritten to circumvent this safeguard.
Prevent the addition of a netem to a qdisc tree if its ancestral path contains a netem. However, filters and actions can cause a packet to change paths when re-enqueued to the root from netem duplication, leading us to the current solution: prevent a duplicating netem from inhabiting the same tree as other netems.
[1] https://lore.kernel.org/netdev/8DuRWwfqjoRDLDmBMlIfbrsZg9Gx50DHJc1ilxsEBNe2D6NMoigR_eIRIG0LOjMc3r10nUUZtArXx4oZBIdUfZQrwjcQhdinnMis_0G7VEk=@willsroot.io/ [2] https://lwn.net/Articles/719297/