The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for RHEL:9
kernel-64k-modules-internal
.
Note: Versions mentioned in the description apply only to the upstream kernel-64k-modules-internal
package and not the kernel-64k-modules-internal
package as distributed by RHEL
.
See How to fix?
for RHEL:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix accesses to uninit stack slots
Privileged programs are supposed to be able to read uninitialized stack memory (ever since 6715df8d5) but, before this patch, these accesses were permitted inconsistently. In particular, accesses were permitted above state->allocated_stack, but not below it. In other words, if the stack was already "large enough", the access was permitted, but otherwise the access was rejected instead of being allowed to "grow the stack". This undesired rejection was happening in two places:
This patch also fixes the tracking of the stack size for variable-offset reads. This second fix is bundled in the same commit as the first one because they're inter-related. Before this patch, writes to the stack using registers containing a variable offset (as opposed to registers with fixed, known values) were not properly contributing to the function's needed stack size. As a result, it was possible for a program to verify, but then to attempt to read out-of-bounds data at runtime because a too small stack had been allocated for it.
Each function tracks the size of the stack it needs in bpf_subprog_info.stack_depth, which is maintained by update_stack_depth(). For regular memory accesses, check_mem_access() was calling update_state_depth() but it was passing in only the fixed part of the offset register, ignoring the variable offset. This was incorrect; the minimum possible value of that register should be used instead.
This tracking is now fixed by centralizing the tracking of stack size in grow_stack_state(), and by lifting the calls to grow_stack_state() to check_stack_access_within_bounds() as suggested by Andrii. The code is now simpler and more convincingly tracks the correct maximum stack size. check_stack_range_initialized() can now rely on enough stack having been allocated for the access; this helps with the fix for the first issue.
A few tests were changed to also check the stack depth computation. The one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.