The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for RHEL:9
kernel-64k-modules-internal
.
Note: Versions mentioned in the description apply only to the upstream kernel-64k-modules-internal
package and not the kernel-64k-modules-internal
package as distributed by RHEL
.
See How to fix?
for RHEL:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix crash caused by calling __xfrm_state_delete() twice
The km.state is not checked in driver's delayed work. When xfrm_state_check_expire() is called, the state can be reset to XFRM_STATE_EXPIRED, even if it is XFRM_STATE_DEAD already. This happens when xfrm state is deleted, but not freed yet. As __xfrm_state_delete() is called again in xfrm timer, the following crash occurs.
To fix this issue, skip xfrm_state_check_expire() if km.state is not XFRM_STATE_VALID.
Oops: general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] SMP CPU: 5 UID: 0 PID: 7448 Comm: kworker/u102:2 Not tainted 6.11.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5e_ipsec: eth%d mlx5e_ipsec_handle_sw_limits [mlx5_core] RIP: 0010:__xfrm_state_delete+0x3d/0x1b0 Code: 0f 84 8b 01 00 00 48 89 fd c6 87 c8 00 00 00 05 48 8d bb 40 10 00 00 e8 11 04 1a 00 48 8b 95 b8 00 00 00 48 8b 85 c0 00 00 00 <48> 89 42 08 48 89 10 48 8b 55 10 48 b8 00 01 00 00 00 00 ad de 48 RSP: 0018:ffff88885f945ec8 EFLAGS: 00010246 RAX: dead000000000122 RBX: ffffffff82afa940 RCX: 0000000000000036 RDX: dead000000000100 RSI: 0000000000000000 RDI: ffffffff82afb980 RBP: ffff888109a20340 R08: ffff88885f945ea0 R09: 0000000000000000 R10: 0000000000000000 R11: ffff88885f945ff8 R12: 0000000000000246 R13: ffff888109a20340 R14: ffff88885f95f420 R15: ffff88885f95f400 FS: 0000000000000000(0000) GS:ffff88885f940000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2163102430 CR3: 00000001128d6001 CR4: 0000000000370eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> ? die_addr+0x33/0x90 ? exc_general_protection+0x1a2/0x390 ? asm_exc_general_protection+0x22/0x30 ? __xfrm_state_delete+0x3d/0x1b0 ? __xfrm_state_delete+0x2f/0x1b0 xfrm_timer_handler+0x174/0x350 ? __xfrm_state_delete+0x1b0/0x1b0 __hrtimer_run_queues+0x121/0x270 hrtimer_run_softirq+0x88/0xd0 handle_softirqs+0xcc/0x270 do_softirq+0x3c/0x50 </IRQ> <TASK> __local_bh_enable_ip+0x47/0x50 mlx5e_ipsec_handle_sw_limits+0x7d/0x90 [mlx5_core] process_one_work+0x137/0x2d0 worker_thread+0x28d/0x3a0 ? rescuer_thread+0x480/0x480 kthread+0xb8/0xe0 ? kthread_park+0x80/0x80 ret_from_fork+0x2d/0x50 ? kthread_park+0x80/0x80 ret_from_fork_asm+0x11/0x20 </TASK>