The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsThere is no fixed version for RHEL:9
kernel-ipaclones-internal
.
Note: Versions mentioned in the description apply only to the upstream kernel-ipaclones-internal
package and not the kernel-ipaclones-internal
package as distributed by RHEL
.
See How to fix?
for RHEL:9
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
udmabuf: change folios array from kmalloc to kvmalloc
When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine, page_alloc only support 4MB. If above this, trigger this warn and return NULL.
udmabuf can change size limit, if change it to 3072(3GB), and then alloc 3GB udmabuf, will fail create.
[ 4080.876581] ------------[ cut here ]------------ [ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350 [ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350 [ 4080.879470] Call Trace: [ 4080.879473] <TASK> [ 4080.879473] ? __alloc_pages+0x2c8/0x350 [ 4080.879475] ? __warn.cold+0x8e/0xe8 [ 4080.880647] ? __alloc_pages+0x2c8/0x350 [ 4080.880909] ? report_bug+0xff/0x140 [ 4080.881175] ? handle_bug+0x3c/0x80 [ 4080.881556] ? exc_invalid_op+0x17/0x70 [ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20 [ 4080.882077] ? udmabuf_create+0x131/0x400
Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB memory, each array entry is pointer(8byte), so can save 524288 pages(2GB).
Further more, costly order(order 3) may not be guaranteed that it can be applied for, due to fragmentation.
This patch change udmabuf array use kvmalloc_array, this can fallback alloc into vmalloc, which can guarantee allocation for any size and does not affect the performance of kmalloc allocations.