Integer Overflow or Wraparound Affecting kernel-modules-partner package, versions *


Severity

Recommended
0.0
medium
0
10

Based on Red Hat Enterprise Linux security rating.

Threat Intelligence

EPSS
0.05% (16th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications

Snyk Learn

Learn about Integer Overflow or Wraparound vulnerabilities in an interactive lesson.

Start learning
  • Snyk IDSNYK-RHEL9-KERNELMODULESPARTNER-8257694
  • published23 Oct 2024
  • disclosed21 Oct 2024

Introduced: 21 Oct 2024

CVE-2024-49888  (opens in a new tab)
CWE-190  (opens in a new tab)

How to fix?

There is no fixed version for RHEL:9 kernel-modules-partner.

NVD Description

Note: Versions mentioned in the description apply only to the upstream kernel-modules-partner package and not the kernel-modules-partner package as distributed by RHEL. See How to fix? for RHEL:9 relevant fixed versions and status.

In the Linux kernel, the following vulnerability has been resolved:

bpf: Fix a sdiv overflow issue

Zac Ecob reported a problem where a bpf program may cause kernel crash due to the following error: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI

The failure is due to the below signed divide: LLONG_MIN/-1 where LLONG_MIN equals to -9,223,372,036,854,775,808. LLONG_MIN/-1 is supposed to give a positive number 9,223,372,036,854,775,808, but it is impossible since for 64-bit system, the maximum positive number is 9,223,372,036,854,775,807. On x86_64, LLONG_MIN/-1 will cause a kernel exception. On arm64, the result for LLONG_MIN/-1 is LLONG_MIN.

Further investigation found all the following sdiv/smod cases may trigger an exception when bpf program is running on x86_64 platform:

  • LLONG_MIN/-1 for 64bit operation
  • INT_MIN/-1 for 32bit operation
  • LLONG_MIN%-1 for 64bit operation
  • INT_MIN%-1 for 32bit operation where -1 can be an immediate or in a register.

On arm64, there are no exceptions:

  • LLONG_MIN/-1 = LLONG_MIN
  • INT_MIN/-1 = INT_MIN
  • LLONG_MIN%-1 = 0
  • INT_MIN%-1 = 0 where -1 can be an immediate or in a register.

Insn patching is needed to handle the above cases and the patched codes produced results aligned with above arm64 result. The below are pseudo codes to handle sdiv/smod exceptions including both divisor -1 and divisor 0 and the divisor is stored in a register.

sdiv: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L2 if tmp == 0 goto L1 rY = 0 L1: rY = -rY; goto L3 L2: rY /= rX L3:

smod: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L1 if tmp == 1 (is64 ? goto L2 : goto L3) rY = 0; goto L2 L1: rY %= rX L2: goto L4 // only when !is64 L3: wY = wY // only when !is64 L4:

[1] https://lore.kernel.org/bpf/tPJLTEh7S_DxFEqAI2Ji5MBSoZVg7_G-Py2iaZpAaWtM961fFTWtsnlzwvTbzBzaUzwQAoNATXKUlt0LZOFgnDcIyKCswAnAGdUF3LBrhGQ=@protonmail.com/

CVSS Base Scores

version 3.1