Double Free Affecting openssl package, versions <3.0.8-r0
Threat Intelligence
Do your applications use this vulnerable package?
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applications- Snyk ID SNYK-ALPINE320-OPENSSL-7010802
- published 23 May 2024
- disclosed 8 Feb 2023
Introduced: 8 Feb 2023
CVE-2022-4450 Open this link in a new tabHow to fix?
Upgrade Alpine:3.20
openssl
to version 3.0.8-r0 or higher.
NVD Description
Note: Versions mentioned in the description apply only to the upstream openssl
package and not the openssl
package as distributed by Alpine
.
See How to fix?
for Alpine:3.20
relevant fixed versions and status.
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack.
The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0.
The OpenSSL asn1parse command line application is also impacted by this issue.