Unprotected Alternate Channel Affecting flux-helm-controller-0.37 package, versions <0.27.0-r7


Severity

Recommended
0.0
medium
0
10

Snyk's Security Team recommends NVD's CVSS assessment. Learn more

Threat Intelligence

EPSS
0.3% (70th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications
  • Snyk IDSNYK-CHAINGUARDLATEST-FLUXHELMCONTROLLER037-6241771
  • published11 Feb 2024
  • disclosed4 Apr 2023

Introduced: 4 Apr 2023

CVE-2023-28842  (opens in a new tab)
CWE-420  (opens in a new tab)
CWE-636  (opens in a new tab)

How to fix?

Upgrade Chainguard flux-helm-controller-0.37 to version 0.27.0-r7 or higher.

NVD Description

Note: Versions mentioned in the description apply only to the upstream flux-helm-controller-0.37 package and not the flux-helm-controller-0.37 package as distributed by Chainguard. See How to fix? for Chainguard relevant fixed versions and status.

Moby) is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (dockerd), which is developed as moby/moby is commonly referred to as Docker.

Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.

The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with the VXLAN metadata, including a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.

Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.

When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.

The overlay driver dynamically and lazily defines the kernel configuration for the VXLAN network on each node as containers are attached and detached. Routes and encryption parameters are only defined for destination nodes that participate in the network. The iptables rules that prevent encrypted overlay networks from accepting unencrypted packets are not created until a peer is available with which to communicate.

Encrypted overlay networks silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams. The implications of this can be quite dire, and GHSA-vwm3-crmr-xfxw should be referenced for a deeper exploration.

Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.

Some workarounds are available. In multi-node clusters, deploy a global ‘pause’ container for each encrypted overlay network, on every node. For a single-node cluster, do not use overlay networks of any sort. Bridge networks provide the same connectivity on a single node and have no multi-node features. The Swarm ingress feature is implemented using an overlay network, but can be disabled by publishing ports in host mode instead of ingress mode (allowing the use of an external load balancer), and removing the ingress network. If encrypted overlay networks are in exclusive use, block UDP port 4789 from traffic that has not been validated by IPSec.

CVSS Scores

version 3.1