The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade github.com/cilium/cilium
to version 1.13.1, 1.12.8, 1.11.15 or higher.
github.com/cilium/cilium is an open source software for providing and transparently securing network connectivity and loadbalancing between application workloads such as application containers or processes.
Affected versions of this package are vulnerable to Directory Traversal. An attacker with access to a Cilium agent pod can write to /opt/cni/bin
due to a hostPath
mount of that directory in the agent pod. By replacing the CNI binary with their own malicious binary and waiting for the creation of a new pod on the node, the attacker can gain access to the underlying node.
Kubernetes RBAC should be used to deny users and service accounts exec
access to Cilium agent pods.
In cases where a user requires exec
access to Cilium agent pods, but should not have access to the underlying node, no workaround is possible.
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
st
is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public
route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e
is the URL encoded version of .
(dot).
Zip-Slip
.One way to achieve this is by using a malicious zip
archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip
archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/
overwriting the authorized_keys
file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys