The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade Oracle:8
kernel-uek
to version 0:5.4.17-2136.348.3.el8uek or higher.
This issue was patched in ELSA-2025-20663
.
Note: Versions mentioned in the description apply only to the upstream kernel-uek
package and not the kernel-uek
package as distributed by Oracle
.
See How to fix?
for Oracle:8
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid out-of-boundary access in dnode page
As Jiaming Zhang reported:
<TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x1c1/0x2a0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x17e/0x800 mm/kasan/report.c:480 kasan_report+0x147/0x180 mm/kasan/report.c:593 data_blkaddr fs/f2fs/f2fs.h:3053 [inline] f2fs_data_blkaddr fs/f2fs/f2fs.h:3058 [inline] f2fs_get_dnode_of_data+0x1a09/0x1c40 fs/f2fs/node.c:855 f2fs_reserve_block+0x53/0x310 fs/f2fs/data.c:1195 prepare_write_begin fs/f2fs/data.c:3395 [inline] f2fs_write_begin+0xf39/0x2190 fs/f2fs/data.c:3594 generic_perform_write+0x2c7/0x910 mm/filemap.c:4112 f2fs_buffered_write_iter fs/f2fs/file.c:4988 [inline] f2fs_file_write_iter+0x1ec8/0x2410 fs/f2fs/file.c:5216 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x546/0xa90 fs/read_write.c:686 ksys_write+0x149/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf3/0x3d0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f
The root cause is in the corrupted image, there is a dnode has the same node id w/ its inode, so during f2fs_get_dnode_of_data(), it tries to access block address in dnode at offset 934, however it parses the dnode as inode node, so that get_dnode_addr() returns 360, then it tries to access page address from 360 + 934 * 4 = 4096 w/ 4 bytes.
To fix this issue, let's add sanity check for node id of all direct nodes during f2fs_get_dnode_of_data().