NULL Pointer Dereference Affecting tensorflow package, versions [2.5.0,2.5.1) [2.4.0,2.4.3) [,2.3.4)


Severity

Recommended
0.0
high
0
10

CVSS assessment made by Snyk's Security Team

    Threat Intelligence

    EPSS
    0.04% (14th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications
  • Snyk ID SNYK-PYTHON-TENSORFLOW-1540833
  • published 13 Aug 2021
  • disclosed 13 Aug 2021
  • credit Unknown

How to fix?

Upgrade tensorflow to version 2.5.1, 2.4.3, 2.3.4 or higher.

Overview

tensorflow is a machine learning framework.

Affected versions of this package are vulnerable to NULL Pointer Dereference. When a user does not supply arguments that determine a valid sparse tensor, tf.raw_ops.SparseTensorSliceDataset implementation can be made to dereference a null pointer. The implementation has some argument validation but fails to consider the case when either indices or values are provided for an empty sparse tensor when the other is not. If indices is empty, then code that performs validation (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If indices as provided by the user is empty, then indices in the C++ code above is backed by an empty std::vector, hence calling indices->dim_size(0) results in null pointer dereferencing (same as calling std::vector::at() on an empty vector).

References

CVSS Scores

version 3.1
Expand this section

Snyk

Recommended
7.7 high
  • Attack Vector (AV)
    Local
  • Attack Complexity (AC)
    Low
  • Privileges Required (PR)
    None
  • User Interaction (UI)
    None
  • Scope (S)
    Unchanged
  • Confidentiality (C)
    None
  • Integrity (I)
    High
  • Availability (A)
    High
Expand this section

NVD

5.5 medium