Improper Input Validation Affecting tensorflow-gpu package, versions [2.5.0,2.5.1)[2.4.0,2.4.3)[,2.3.4)


Severity

Recommended
0.0
high
0
10

CVSS assessment made by Snyk's Security Team. Learn more

Threat Intelligence

EPSS
0.04% (15th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications

Snyk Learn

Learn about Improper Input Validation vulnerabilities in an interactive lesson.

Start learning
  • Snyk IDSNYK-PYTHON-TENSORFLOWGPU-1540700
  • published13 Aug 2021
  • disclosed13 Aug 2021
  • creditUnknown

Introduced: 13 Aug 2021

CVE-2021-37665  (opens in a new tab)
CWE-20  (opens in a new tab)

How to fix?

Upgrade tensorflow-gpu to version 2.5.1, 2.4.3, 2.3.4 or higher.

Overview

tensorflow-gpu is a machine learning framework.

Affected versions of this package are vulnerable to Improper Input Validation as, due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The implementation does not validate the dimensions of the input tensor. A similar issue occurs in MklRequantizePerChannelOp. The implementation does not perform full validation for all the input arguments.

CVSS Scores

version 3.1