The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade SLES:15.2
kernel-syms
to version 5.3.18-150200.24.183.1 or higher.
Note: Versions mentioned in the description apply only to the upstream kernel-syms
package and not the kernel-syms
package as distributed by SLES
.
See How to fix?
for SLES:15.2
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
mtd: Fix gluebi NULL pointer dereference caused by ftl notifier
If both ftl.ko and gluebi.ko are loaded, the notifier of ftl triggers NULL pointer dereference when trying to access ‘gluebi->desc’ in gluebi_read().
ubi_gluebi_init ubi_register_volume_notifier ubi_enumerate_volumes ubi_notify_all gluebi_notify nb->notifier_call() gluebi_create mtd_device_register mtd_device_parse_register add_mtd_device blktrans_notify_add not->add() ftl_add_mtd tr->add_mtd() scan_header mtd_read mtd_read_oob mtd_read_oob_std gluebi_read mtd->read() gluebi->desc - NULL
Detailed reproduction information available at the Link [1],
In the normal case, obtain gluebi->desc in the gluebi_get_device(), and access gluebi->desc in the gluebi_read(). However, gluebi_get_device() is not executed in advance in the ftl_add_mtd() process, which leads to NULL pointer dereference.
The solution for the gluebi module is to run jffs2 on the UBI volume without considering working with ftl or mtdblock [2]. Therefore, this problem can be avoided by preventing gluebi from creating the mtdblock device after creating mtd partition of the type MTD_UBIVOLUME.