The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade SLES:15.3
gfs2-kmp-default
to version 5.3.18-150300.59.164.1 or higher.
Note: Versions mentioned in the description apply only to the upstream gfs2-kmp-default
package and not the gfs2-kmp-default
package as distributed by SLES
.
See How to fix?
for SLES:15.3
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
PCI: aardvark: Fix kernel panic during PIO transfer
Trying to start a new PIO transfer by writing value 0 in PIO_START register when previous transfer has not yet completed (which is indicated by value 1 in PIO_START) causes an External Abort on CPU, which results in kernel panic:
SError Interrupt on CPU0, code 0xbf000002 -- SError
Kernel panic - not syncing: Asynchronous SError Interrupt
To prevent kernel panic, it is required to reject a new PIO transfer when previous one has not finished yet.
If previous PIO transfer is not finished yet, the kernel may issue a new PIO request only if the previous PIO transfer timed out.
In the past the root cause of this issue was incorrectly identified (as it often happens during link retraining or after link down event) and special hack was implemented in Trusted Firmware to catch all SError events in EL3, to ignore errors with code 0xbf000002 and not forwarding any other errors to kernel and instead throw panic from EL3 Trusted Firmware handler.
Links to discussion and patches about this issue: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=3c7dcdac5c50 https://lore.kernel.org/linux-pci/20190316161243.29517-1-repk@triplefau.lt/ https://lore.kernel.org/linux-pci/971be151d24312cc533989a64bd454b4@www.loen.fr/ https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/1541
But the real cause was the fact that during link retraining or after link down event the PIO transfer may take longer time, up to the 1.44s until it times out. This increased probability that a new PIO transfer would be issued by kernel while previous one has not finished yet.
After applying this change into the kernel, it is possible to revert the mentioned TF-A hack and SError events do not have to be caught in TF-A EL3.