The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade SLES:15.5
kernel-livepatch-5_14_21-150500_13_52-rt
to version 1-150500.11.5.1 or higher.
Note: Versions mentioned in the description apply only to the upstream kernel-livepatch-5_14_21-150500_13_52-rt
package and not the kernel-livepatch-5_14_21-150500_13_52-rt
package as distributed by SLES
.
See How to fix?
for SLES:15.5
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
arm64: dts: qcom: msm8998: Fix CPU/L2 idle state latency and residency
The entry/exit latency and minimum residency in state for the idle states of MSM8998 were ..bad: first of all, for all of them the timings were written for CPU sleep but the min-residency-us param was miscalculated (supposedly, while porting this from downstream); Then, the power collapse states are setting PC on both the CPU cluster and the L2 cache, which have different timings: in the specific case of L2 the times are higher so these ones should be taken into account instead of the CPU ones.
This parameter misconfiguration was not giving particular issues because on MSM8998 there was no CPU scaling at all, so cluster/L2 power collapse was rarely (if ever) hit. When CPU scaling is enabled, though, the wrong timings will produce SoC unstability shown to the user as random, apparently error-less, sudden reboots and/or lockups.
This set of parameters are stabilizing the SoC when CPU scaling is ON and when power collapse is frequently hit.