The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsLearn about NULL Pointer Dereference vulnerabilities in an interactive lesson.
Start learningUpgrade SLES:15.6
kernel-devel-azure
to version 6.4.0-150600.8.23.1 or higher.
Note: Versions mentioned in the description apply only to the upstream kernel-devel-azure
package and not the kernel-devel-azure
package as distributed by SLES
.
See How to fix?
for SLES:15.6
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: avoid NULL pointer error during sdio remove
When running 'rmmod ath10k', ath10k_sdio_remove() will free sdio workqueue by destroy_workqueue(). But if CONFIG_INIT_ON_FREE_DEFAULT_ON is set to yes, kernel panic will happen: Call trace: destroy_workqueue+0x1c/0x258 ath10k_sdio_remove+0x84/0x94 sdio_bus_remove+0x50/0x16c device_release_driver_internal+0x188/0x25c device_driver_detach+0x20/0x2c
This is because during 'rmmod ath10k', ath10k_sdio_remove() will call ath10k_core_destroy() before destroy_workqueue(). wiphy_dev_release() will finally be called in ath10k_core_destroy(). This function will free struct cfg80211_registered_device *rdev and all its members, including wiphy, dev and the pointer of sdio workqueue. Then the pointer of sdio workqueue will be set to NULL due to CONFIG_INIT_ON_FREE_DEFAULT_ON.
After device release, destroy_workqueue() will use NULL pointer then the kernel panic happen.
Call trace: ath10k_sdio_remove ->ath10k_core_unregister …… ->ath10k_core_stop ->ath10k_hif_stop ->ath10k_sdio_irq_disable ->ath10k_hif_power_down ->del_timer_sync(&ar_sdio->sleep_timer) ->ath10k_core_destroy ->ath10k_mac_destroy ->ieee80211_free_hw ->wiphy_free …… ->wiphy_dev_release ->destroy_workqueue
Need to call destroy_workqueue() before ath10k_core_destroy(), free the work queue buffer first and then free pointer of work queue by ath10k_core_destroy(). This order matches the error path order in ath10k_sdio_probe().
No work will be queued on sdio workqueue between it is destroyed and ath10k_core_destroy() is called. Based on the call_stack above, the reason is: Only ath10k_sdio_sleep_timer_handler(), ath10k_sdio_hif_tx_sg() and ath10k_sdio_irq_disable() will queue work on sdio workqueue. Sleep timer will be deleted before ath10k_core_destroy() in ath10k_hif_power_down(). ath10k_sdio_irq_disable() only be called in ath10k_hif_stop(). ath10k_core_unregister() will call ath10k_hif_power_down() to stop hif bus, so ath10k_sdio_hif_tx_sg() won't be called anymore.
Tested-on: QCA6174 hw3.2 SDIO WLAN.RMH.4.4.1-00189