The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsLearn about NULL Pointer Dereference vulnerabilities in an interactive lesson.
Start learningUpgrade SLES:15.6
kernel-livepatch-6_4_0-150600_23_33-default
to version 1-150600.13.3.1 or higher.
Note: Versions mentioned in the description apply only to the upstream kernel-livepatch-6_4_0-150600_23_33-default
package and not the kernel-livepatch-6_4_0-150600_23_33-default
package as distributed by SLES
.
See How to fix?
for SLES:15.6
relevant fixed versions and status.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint
When using the "block:block_dirty_buffer" tracepoint, mark_buffer_dirty() may cause a NULL pointer dereference, or a general protection fault when KASAN is enabled.
This happens because, since the tracepoint was added in mark_buffer_dirty(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure.
In the current implementation, nilfs_grab_buffer(), which grabs a buffer to read (or create) a block of metadata, including b-tree node blocks, does not set the block device, but instead does so only if the buffer is not in the "uptodate" state for each of its caller block reading functions. However, if the uptodate flag is set on a folio/page, and the buffer heads are detached from it by try_to_free_buffers(), and new buffer heads are then attached by create_empty_buffers(), the uptodate flag may be restored to each buffer without the block device being set to bh->b_bdev, and mark_buffer_dirty() may be called later in that state, resulting in the bug mentioned above.
Fix this issue by making nilfs_grab_buffer() always set the block device of the super block structure to the buffer head, regardless of the state of the buffer's uptodate flag.