The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade asterisk
to version 13.37.1, 16.14.1, 17.8.1, 18.0.1 or higher.
Affected versions of this package are vulnerable to Denial of Service (DoS). A res_pjsip_session crash was discovered in Asterisk Open Source 13.x before 13.37.1, 16.x before 16.14.1, 17.x before 17.8.1, and 18.x before 18.0.1. and Certified Asterisk before 16.8-cert5. Upon receiving a new SIP Invite, Asterisk did not return the created dialog locked or referenced. This caused a gap between the creation of the dialog object, and its next use by the thread that created it. Depending on some off-nominal circumstances and timing, it was possible for another thread to free said dialog in this gap. Asterisk could then crash when the dialog object, or any of its dependent objects, were dereferenced or accessed next by the initial-creation thread. Note, however, that this crash can only occur when using a connection-oriented protocol (e.g., TCP or TLS, but not UDP) for SIP transport. Also, the remote client must be authenticated, or Asterisk must be configured for anonymous calling.
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws
package