Denial of Service (DoS) Affecting tensorflow/tensorflow package, versions [2.3.0,2.3.4)[2.4.0,2.4.3)


Severity

Recommended
0.0
high
0
10

CVSS assessment made by Snyk's Security Team. Learn more

Threat Intelligence

EPSS
0.04% (16th percentile)

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications
  • Snyk IDSNYK-UNMANAGED-TENSORFLOWTENSORFLOW-2333402
  • published12 Jan 2022
  • disclosed12 Aug 2021
  • creditUnknown

Introduced: 12 Aug 2021

CVE-2021-37679  (opens in a new tab)
CWE-681  (opens in a new tab)

How to fix?

Upgrade tensorflow/tensorflow to version 2.3.4, 2.4.3 or higher.

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS). TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a tf.map_fn within another tf.map_fn call. However, if the input tensor is a RaggedTensor and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The t and z outputs should be identical, however this is not the case. The last row of t contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a Variant tensor to a RaggedTensor. The implementation does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

CVSS Scores

version 3.1