The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade tensorflow/tensorflow
to version 2.1.4, 2.2.3, 2.3.3, 2.4.2 or higher.
Affected versions of this package are vulnerable to Out-of-bounds Read. TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in tf.raw_ops.QuantizedBatchNormWithGlobalNormalization
. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, .flat<T>()
is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.