Snyk has a proof-of-concept or detailed explanation of how to exploit this vulnerability.
The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsLearn about Improper Input Validation vulnerabilities in an interactive lesson.
Start learningUpgrade tensorflow/tensorflow
to version 1.15.4, 2.0.3, 2.1.2, 2.2.1, 2.3.1 or higher.
Affected versions of this package are vulnerable to Improper Input Validation. In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the tf.raw_ops.Switch
operation takes as input a tensor and a boolean and outputs two tensors. Depending on the boolean value, one of the tensors is exactly the input tensor whereas the other one should be an empty tensor. However, the eager runtime traverses all tensors in the output. Since only one of the tensors is defined, the other one is nullptr
, hence we are binding a reference to nullptr
. This is undefined behavior and reported as an error if compiling with -fsanitize=null
. In this case, this results in a segmentation fault The issue is patched in commit da8558533d925694483d2c136a9220d6d49d843c, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.