The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade tensorflow/tensorflow
to version 2.3.4, 2.4.3 or higher.
Affected versions of this package are vulnerable to Use After Free. TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as MutableHashTableShape
) produce extra output information in the form of a ShapeAndType
struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. ShapeRefiner
is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.