Snyk has a proof-of-concept or detailed explanation of how to exploit this vulnerability.
The probability is the direct output of the EPSS model, and conveys an overall sense of the threat of exploitation in the wild. The percentile measures the EPSS probability relative to all known EPSS scores. Note: This data is updated daily, relying on the latest available EPSS model version. Check out the EPSS documentation for more details.
In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.
Test your applicationsUpgrade tensorflow/tensorflow
to version 2.3.1 or higher.
Affected versions of this package are vulnerable to Out-of-bounds Write. In Tensorflow before version 2.3.1, the RaggedCountSparseOutput
implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the splits
tensor generate a valid partitioning of the values
tensor. Hence, the code is prone to heap buffer overflow. If split_values
does not end with a value at least num_values
then the while
loop condition will trigger a read outside of the bounds of split_values
once batch_idx
grows too large. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.